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~~~~~~~~T T± ~~~ 1’ABSTRACT
The definition of the Draz in inverse of a square matrix

with complex elements is extended to rectangular matrices by

showing that for any B and W , m by n and n by m

respectively, there exists a unique matrix , X , such that

(BW) k 
= (BW) XW, for some positive integer k , XWBWX=X

and BWX=XWB. Var ious expressions satisfied by B, W , X and

related matrices are developed.
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SIGNIFICANCE AND EXPLANATION

Efficient methods for handling systems of linear simultaneous

algebraic equations provide a fundamental tool in solving problems in

almost every area of computing and applied mathematics. In matrix

—1 —lnotation, the solution of Ax = b is given by x = A b, where A

denotes the inverse of A

In classical matrix algebra, the inverse of A exists only if

A is square and “nonsingular.” The unique inverse then satisfies

AA 1 
= A 1A = I. A singular or rectangular matrix has no inverse

in this sense. However there may be associated with it a variety of

“generalized inverses” , each having some of the properties of the

usual inverse. For example suppose that we have m equations in n

unknowns , Ax = b , where A is in x n , in > n , rank n. The solution

in a least squares sense is

x = (ATA)~~ ATb

and the matrix multiplying b is a general ized in verse.

A certain type of generalized inverse, the Draz in inverse, has

heretofore been defined only for square (usually singular ) matrices

and has found application to Markov processes and to the solution of

systems of ord inary differential equations. In this paper the defini-

tion of the Draz in inverse is extended to rectangular matrices and

its properties studied. (This extended Drazin inverse is defined in the

Abstract.)

The responsibility for the wording and views expressed in this descriptive
summary lies with M~~ , and not with the authors of this report.
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A DRAZIN INVERSE FOR RECTANGULAR MATRICES

R. E. Cline and T. N. E. Greville

1. INTRODUCTION .

Let A be any rectangular matrix with complex elements. Then the Moore-

Penrose inverse of A is the unique matrix X = A+ such that

(1.1) AXA = A, XAX = X, (AX)8 = AX , (XA)~’ = XA

(where the superscript H denotes conjugate transpose). On the other hand, if

A is square, the Drazin inverse of A is the unique matr ix X = A
d 

such that

(1.2) Ak = A~~
1X, for some positive integer k

(1.3) X = X~ A

( 1.4) AX = XA ,

It is the purpose of this paper to show that a Draz in inverse can be defined

for rectan gular matrices in such a way that both A+ and A
~ 

(when A is square )

follow as special cases.

2. THE W-WEIGHTED DRAZ IN INVERSE OF B .

Although the Draz in inverse was originally considered for elements in an

associative ring [3] and Lemma 1 was established in that context [2 ] ,  we use

this result only for matrices and restate it accordingly.

LEMMA 1: For any matrices B and W , in by n and n by m , respectively,

(BW)
d 

= B (WB )
~ W.

The reader can also verify Lemma 1 by taking X equal to the right member

of the equation and A = BW and verifying that (l.2)—(1.4) are satisfied.

Using (1.4) to rewrite (1.3) as A
d 

= A
d

AA
d~ 

the expressions in Corollary

1.1 now follow at once by induction.

Sponsored by the United States Army under Contract No. DAAG29—75—C-0024.
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COROLLARY 1.1: For every positive integer p

W (BW )~ = (WB )~~W

and

B (WB )~ = (BW)~ B.

Our first result, Theorem 2, is established for an arbitrary positive

integer p . As will be indicated following the proof , however , the general

case can always be reduced to p = 2 by a simple t ransformation .

THEOREM 2: For any matrices B and W , and for every positive integer p

there is a unique X such that

(2.1) (BW ) dXW = (BW)~

(2 .2)  BWX = XWB

(2.3) BW(BW)dX = X.

Also, there is a unique X such that

(2.4 )  XW = BW (BW)~

(2.5 ) WX = WB(wB)~

(2.6) XW (BW)~~
1X = x

The unique matrix X which satisfies both sets of equations is

(2.7 )  X = B (WB )~

Proof: Using (1.3) and Corollary 1.1, it is easily seen that X in (2.7)

satisfies (2.1) to (2.6).

~~ establish uniqueness, we show first that (2.1), (2.2) and (2.3) imply

(2.4), (2.5) and ( 2 . 6) ,  and then that (2.4), (2.5) and (2.6) imply (2.7).

Now XW = BW(BW)
d
XW = BW(BW)~~, by (2.3) and (2.1). Thus (2.4) holds, and

combines with (2.3 )  to give

XW(BW)~~
1X = BW(BW)~~(BW)~~~X = BW (BW ) dX = X .

Thus (2.6) also holds. Finally, using (2.2), (2.3), (2.4) and Corollary 1.1

we have

—2— 
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WX = ~BW (3W) 
d
X = ~~~~~

= 

~~~~~ 
= d~~~”~~~

= (WE ) 2 (WB ) P+l 
= (WB) (WB)~

that is , (2 .5 ) .  Hence (2 .1) ,  (2 .2 )  and (2.3 )  imply (2 . 4 ) ,  (2.5 ) and (2 .6 ) .

If (2 . 4 ) ,  (2.5 )  and (2.6 )  hold , then

X = XW(BW )~~
1X = BW (BW)~~(BW)~~

1X

= (Bw) dBwx = (BW) dBWB (wB )
~

= BWB (WB )~
4
~ = B (WE )

Hence (2.7) holds.

Observe next that if p > 1, q > -l and r > 0 are integers such that

q+2r+2 = p, and if we let ~~~~ = (WB )
a 

when q -1, then B (WB )~ =

3(~~ )~~( ( (~~ ) r~ ) (B (WB )’a) ]~~. Consequently, considerations of x in Theorem 2

can always be reduced to the case p = 2 if B is replaced by 3(~ 3)~ and

W is replaced by (WB ) rW

CO~ )LLARY 2.1: The matrix X = ]3(WB )~ is the unique solution to the equat ions

(2.8) (BW ) = (BW ) XW , for some positive integer k

(2.9) x = xw~wx

(2.10) BWX = XWB

Proof: That X = B(WB)~ is a solution is apparent by noting that the relations

in (2.10) and (2.2) are identical, (2.9) is (2.6) when p = 2 and, with

XW = (BW)~ by (2.4), (2.8) is (1.2) for A = BW

To show uniqueness , suppose both X1 and X2 are solutions to (2.8) for

some positive integers k1 and k2 , respectively, (2.9 ) and (2 .10). Let

k = max (k
11k2

) .  Then using repeated applications of equations (2.8) , (2.9) ,

and (2.10) we nave ~‘

—3—



X1 = X
1

WBWX
1 

= BWX
1

WX
1 

= (BW) 2 (x
1w) 2x1

= ... = (BW) k
(X1W) kX1 = (BW)~~~~X2 W ( X 1W) 1

~X1
= X 2 (WE ) w(X W) k

X = X2WBW (BW) k (x
1w) kx1

= X
2

WBWX
1

Continuing in a similar manner, X
2
WBWX

1 
can be reduced to X

2. Thus

X = B (WB)~ is unique .

It should be noted in Corollary 2.1 that B
d 

= B(W B)~ when B is square

and w = I. Also , there is a direct correspondence between the relations in

(2.8)  and ( 1.2) ,  (2 .9)  and (1.3) when written as X = XAX , and (2.10) and (1.4)

in which the role of W in (2 .8 ) ,  (2.9 ) and (2.10) is to act as a “sandwich”

matrix so that products such as BWX and XWB can be defined. In view of the

correspondence between the defining equat ions for Ad and those in Corollary

2. 1, we def ine the Drazin inverse of a rectangular matrix in the following

manner :

DEFINITION 1: For any matrices B and W , in by n and n by in , re-

spectively, the matrix X = B(WB)~ is called the W—weighted Drazin inverse of

B, and is written as X = 3
d ~

Given a square matrix , A , the smallest positive integer k such that

( 1.2) holds is called the index of A , and it can be shown that k is the

minimal power for which Ak and A1
~~~ have the same rank. Moreover ,

(A
d
)
d 

= A2A
d , so that (A

d
)
d 

= A if and only if A has index one , whereas

((A
d
)
d
)
d 

= A
d , 

and A
d always has index one (3] . In Theorem 3 we characerize

matrices , X such that X = B
d W  for some W in terms of matrices with

index one.

THEOREM 3: Let B and X be any in by n matrices. Then X = Bd W  for

some w if and only if X has the form

-4— 
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(2.11) X = BYBY B

for some matrix Y such that both BY and YB have index one.

Proof: Suppose W = Y(BY )~ = (YB)~ Y , where BY and YB have index one.

Then WE = (YB )
d 

and, using (2.11),

WX = (YB)
dYBYB = YB =

In a similar manner, BW = (BY)d , and

X W = BY = (BW )
d

Finally,

X W B W X = B Y B Y B = X ,

so that (2.4), (2.5) and (2.6) hold for B, W, X and ~ = 2. Thus X = B
d W

Conversely, if X = B
d W  

for some W then

X = B (WB )~~ = (BW) dB (wB )
d

= BW(BW)~ B (WB)~ WB

= B (WB)
dWB (WB )

dWE

is of the form (2.11 ) where Y = (WB )~~W. Moreover , BY = (BW ) d and YB = (WB )
d

have index one.

For any matrix B in Theorcm 3 , both W and Y are n by m , and the

following corollary shows that W = Y and X = B in (2.11) is necessary and

sufficient to have B and Bd W  equal.

COROLLARY 3.1: B = B
d W  if and only if B = BWBWB .

Proof: If B = BWBWB, then WE = (WE ) 3 implies WE = (WB)
d 
. Thus, B = Bd W .

Conversely, if B = B
d W  

= B (WB)~ then WE = (WB )
a

—5—
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3. THE B-WEIGHTED DRAZIN INVERSE OF W

For any B and W , in by n and n by in , respectively, inter-

changing the roles of B and W throughout §2 provides a completely dual set

of results for Wd B  
= W (E W)~~, the B—weighted Drazin inverse of W . However,

whereas Bd W  has the size of B W
d,B 

has the size of BH and B
+
. Anal-

ogous to the observation in §2 that B
d 

= when B is square and W = I,

we now consider choices of W for which E
+ 

= Wd B

Following the notation of [1], let B~
2
~ = {ZIZBZ = z} . Then Wd B  €

for any w such that B
+ 

= Wd B

LEMMA 4 : W
d,B 

€ B~~~ if and only if Wd B  = W(BW)
d

Proof: If W
d,B 

C B
(2)

, then W(BW )~ = W(BW )~ so that (BW)
d 

is ideinpotent.

Conversely, W(BW )
d 

€ B~~~ .

An immediate consequence of Lemma 4 is that only expressions of the form

B~ = W (BW )
d 

must be considered when determining choices of W .  Moreover,

observe that since A = A
d 

for any Hermitian matrix and (BB ) = B B for

any B , then

(3.1) B
+ 

= B
+BB

+ 
= B

H
B
H+
B
+ 

= B
H (BBH)

d

Therefore, one choice of W is BH. To characterize the class of all matrices

which can be used to form B
+ 

in this manner, it is convenient to replace W

Hby C , where C has the size of B

DEF IN ITION 2: For any m by n matrices B and C , C is said to be alias

to B if B~ = C
H (BCH)

d

Given any m by n matrix B with rank r , B = EF is said to be a

full rank factorization if E and F1
~ have r columns [1]. In this case

B = F+E+ with E+ 
= (EME) 1

E
8 

a left inverse of E and F
+ 

= F8
(FF

8) 1 
a

right inverse of F .

—6—



Mat rices alias to B are now characterized using a full rank factoriza—

tion of B . In the proof of Theorem 5 we use the facts [4] that the general

solution of a consistent system of equations AXE = C can be written as

(3.2) X = X
0 + Y - A+AYBB+

where X
0 is any particular solution and Y is arbitrary , and that necessary

and sufficient conditions for the equations AX = B, XC = D to have a common

solution are that each is consistent and AD = BC in which case

+ + + +
(3.3) X

0 
= A B + DC - A ADC

is a solution .

THEOREM 5: Let B = EF be any full rank factorization . Then C is alias to

B if and only if C has the form

(3.4) C = E S F + Z

where S is any nonsingular matrix and Z is any matrix such that BZ
8 

= 0

and Z
H
B = O

Proof; If C has the form in (3.4) where S and Z satisfy the hypotheses,

then 
.

C
H (BCH)

d 
= (CHB)

d
C
H 

= (FHS
H
E
HEF)

d
F
H
S
H
E
H

= F
H
S
H (EHEFFHSH)

d
E
H

= F
H
S
H (SH) 1 (FF8) ~ (E8E)~~

’E~
’

= F
+
E
+
= B

+
.

Thus C is alias to B

To prove the converse , suppose first that B has either full row rank or

full column rank: If B has full row rank and C is alias to B, then

B
+ 

= B
H (BBH) = CH (BCH )

d 
implies that BC8 is nonsingular. Hence C = S

1
B

where S
1 

= CB~’(BB
8) 1 

= CB+ is nonsingular. By a similar type of argument,

C = BS
2 

with S
2 

nonsingular if B has full column rank. Consequently , (3.4)

holds with Z = 0 in both cases.

—7—
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Suppose now that B has neither full row rank nor full column rank. With

B = EF a full rank factorization and C alias to B , then F+E+ = CM (BC
H
)
d

im plies

E+ 
= FCH (EFCH)

d

and

F~ = CH
EFC

H
d

E = ~.
HE I FC HE)

d

Therefore , ~~H is alias to E and EHC is alias to F , so that there exist

nonsingular matrices Q and R , say , for which

(3.5) FCH = QEH

and

(3 .6)  CH
E = FHR.

Using (3.3) it then follows that

(3.7) X
0 

= F
+
QE
H 

+ F
HRE+ = F

+FFHRE+ = F
+
QE
H

is a solution to (3.5), (3.6) and thus to

(3.8) FCHE = QE8E

But by (3.2), all solutions of (3.8) can be written as

(3.9) C
H 

= x0 +

where Z8 = Y - F+FYE E+ with Y arbitrary. Consequently those solutions in

(3.9) such that (3.5) and (3.6) also hold must satisfy FZH = 0 and ZHE = 0,

which implies BZ
8 

= 0 and ZHB = 0. Finally, the form in (3.4) is obtained

from (3.9) by noting that the last expression for X
0 

in (3.7) can be written

k as X
0 

= F
H
S
H
E
H with = (FF

8)~~~Q nonsingular.

In Corollary 5 .1 we characterize those matrices in (3.4) with Z = 0.

COROLLARY 5.1: For any full rank factorization B = EF , the set of matrices

alias to B of the form C = ESF is an equivalence class. S

-8—



Proof: The relation is reflexive with S = I , that is , (3.1) . Since C = E( SF)

is a full rank factorization , symmetry follows from B = ES 1
(SF). Moreover, if

D alias to C has the form D = ET(SF) with P nonsingular , then D is

alias to B .
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